La Tomi à SIBUT

(Station installée et exploitée par l'ORSTOM.)

Bassin de l'Oubangui

I/- SITUATION

Au nouveau pont de la route SIBUT-CRAMPEL-GRIMARI, coté aval.

Eléments 0-1 en rive gauche. Eléments 2-3, 3-4 et 6-7 en rive droite sur UPN. Elément 4-6 sur la pile du pont.

Coordonnées géographiques : 05º44' de latitude Nord.
019º05' de longitude Est.

Superficie du bassin versant : 3.380 km².

2/- RATTACHEMENT ALTIMETRIQUE

Repère de nivellement, matricule GT.75, d'altitude 407,153m (IGN 1957), situé sur le mur en aile de la culée rive droite, coté amont.

Altitude du zéro de l'échelle : 398,59m (IGN 1957).

3/- HISTORIQUE

La station a été installée le 19 Août 1951, avec un zéro à 398,59m (IGN 1957).

Le 5 Février 1952, il est constaté que les éléments sont décalés, avec les zéro suivants :

- élément 0-1 : non déterminé
- éléments 1 à 3 : 398,57m
- éléments 3 à 6 : 398,59m
- éléments 6 à 7 : 398,48m

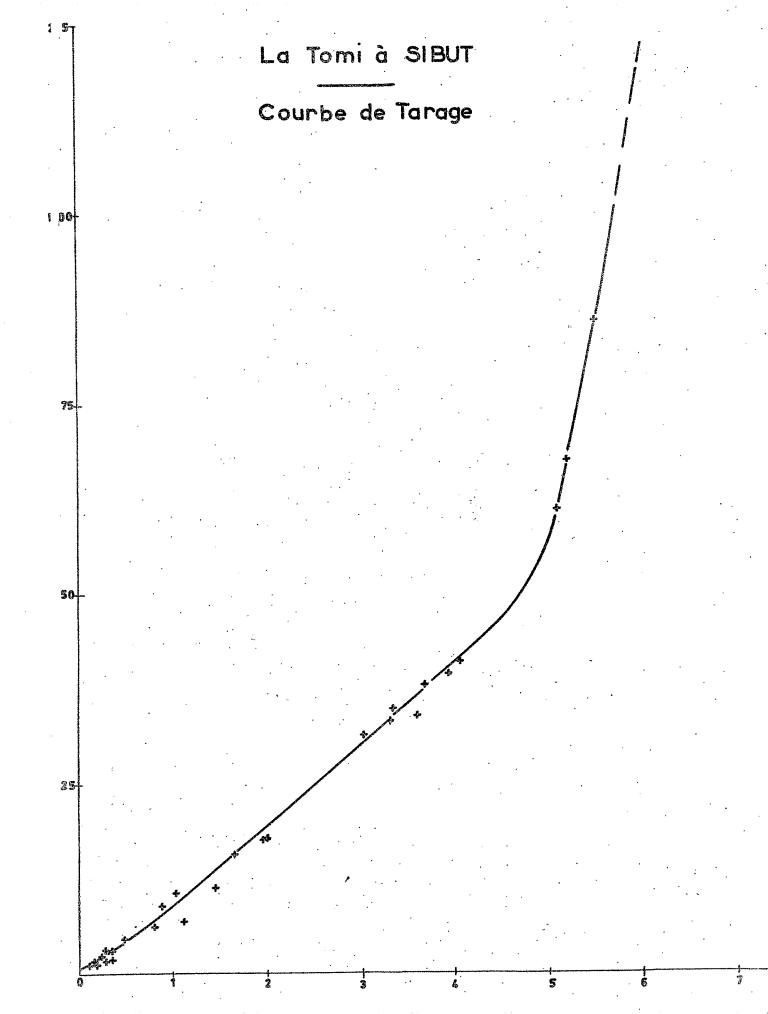
Les éléments sont recalés le 8 Avril 1966, où avait été constaté:

- zéro de l'élément 0-1: 398,56m
- zéro des éléments l à 6: 398,59m
- zéro de l'élément 6-7 : 398,42m

La station a été refaite le 27 Février 1969 avec tous les éléments calés avec zéro à 398,59m (IGN 1957).

4/- JAUGEAGES

nº	Date	Hem	$Q m^3/s$
1	17-11-1951	165	15,9
2	22- 3- 1952	016	1,6
3	15- 2-1953	034	3,0
4	1- 5-1953	OTO	1,4
5	25- 7 - 195 3	088	9,0
6	11-10-1954	510	6I,O
7	11 - 3- 1956	049	4,5
8	26- 8-1956	335	34,9
8bis	9- 8-1957	200	17,8
8ter	27- 8-1957	3 9 3	39,4
9	27- 9 - 1960	551	85,9
9bis	1- 9-1963	332	33,3
10	9- 4-1965	028	3,13
11	6- 8 - 1965	3 69	3 8,0
12	6- 9-1965	406	40,9
13	8 - 3- 1966	024	2,43
14	28-11-1966	197	17,2
15	18- 6-1967	103	10,6
16	1- 8-1967	303	31,2
17	17- 9-1967	521	67,4
18	10- 8-1968	144	11,3
19	17-10-1969	3 59	33, 7
20	17- 1-1970	080	6,14


21	3- 4- 1970	028	l,64
22	14-12-1970	105	6 , 75
23	15- 4-1971	034	1,88
24	28- 4-1971	0.175	1.19

5/- ETALONNAGE

L'étalonnage est satisfaisant en basses, moyennes et hautes eaux. Seules les très hautes eaux demandent une extrapolation qui demanderait à être mieux précisée.

6/- BIBLIOGRAPHIE

- Annuaire hydrologique de l'ORSTOM
- Annuaire hydrologique de la République Centrafricaine.1971.

La Tomi à SIBUT

Barème d'étalonnage

(zéro échelle à 398,59m)

Ĥ m	$Q m^3/s$	H m	$Q m^3/s$
0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 1,10 1,20 1,30 1,40 1,50 1,60 1,70 1,80 1,90 2,00 2,10 2,20 2,40 2,50 2,40 2,50 2,60 2,70 2,80 2,90 3,10	0,800 1,38 2,04 2,78 3,60 4,50 5,41 8,33 11,33 12,33 12,33 14,5 12,8 12,9,6 10,7 18,5 12,8 12,9,6 10,7 12,8 13,9,6 10,7 12,9,6 10,7 12,9,6 10,7 12,9,6 10,7 12,9,6 10,7 12,9,6 10,7 12,9,6 10,9	3,40 3,40 3,50 3,50 3,90 4,10 4,50 4,50 4,50 5,10 5,10 5,10 5,10 5,10 6,10 6,40	32,6,6788990013667889900136662,991507 32,6,6788990013662,991507 33,6990013662,991507 445,699533209963007 11207 1207 1207 1207 1207 1207 1207